top of page

Search Results

44 results found for ""

  • Keywords | Kavya Technitas

    Modular process skid modular skid modular skid package skid mounted package process skid skid filtration skid multiport valve skid produced water treatment modular skid early production facility pipe stress analysis plant piping piping design pressure vessel finite element analysis FEA static equipment design piping 3-d model piping isometrics PV elite flow metering process skid fitness for service modular process skid package oil and gas crude oil treatment hydro cyclone piping flexibility analysis pipe flexibility modular process skid 3D model storage tank design pressure container modular skid fabrication detail engineering design detailed engineering design a pressure vessel compression vessel flexibility analysis of piping systems mechanical vessel modular process skid design modular skid design pipe flexibility analysis piping analysis piping stress analysis engineer pressure tanker pressure vessel pressure skid module fabrication stress analysis of piping systems the pressure vessel tubing stress analysis

  • Filtration Skid Package

    Back Filtration Skid Package FILTERATION MODULAR PROCESS SKIDS Filtration modular process skids are compact and self-contained units designed for various filtration processes in the oil and gas, chemical, and other industries. These skids integrate multiple components and equipment required for filtration operations into a single modular package, providing a flexible and efficient solution for process applications. Filtration modular process skids typically consist of the following main components: ➣ Filter vessels: Depending on the filtration process and application, different types of filter vessels may be included, such as cartridge filters, bag filters, multimedia filters, or pressure leaf filters. ➣ Pumps: The skid incorporates pumps to circulate and transfer the process fluids through the filtration system. Common pump types used include centrifugal pumps, positive displacement pumps, or specialized pumps for handling specific fluid characteristics. ➣ Piping and valves: A network of piping and valves is integrated into the skid to direct the flow of fluids between different components and allow for proper isolation, control, and maintenance. ➣ Instrumentation and controls: Various instrumentation, such as flow meters, pressure gauges, and level indicators, are included to monitor and control the filtration process. The skid may also have a local control panel or be integrated with a larger plant control system. ➣ Ancillary equipment: Depending on the application, additional equipment may be included, such as backwash systems, air blowers, chemical dosing systems, or sludge handling systems. ➣ Skid structure: The entire assembly is mounted on a skid or base, which allows for easy transportation, installation, and relocation. Filtration modular process skids offer several advantages over traditional, field-erected filtration systems: ➣ Compact footprint: The modular design allows for efficient use of space, making it suitable for applications with limited available area. ➣ Pre-assembled and tested: The skids are typically pre-assembled and tested in a controlled environment, ensuring proper integration and functionality before deployment. ➣ Rapid deployment: Modular skids can be quickly transported and installed on-site, reducing project timelines and allowing for faster commissioning. ➣ Flexibility: The modular nature of the skids allows for easy modification, expansion, or reconfiguration to accommodate changing process requirements or future upgrades. ➣ Standardization: Skid manufacturers can offer standardized designs, which can lead to cost savings and streamlined maintenance procedures. Filtration modular process skids are widely used in various applications, including: • Produced water treatment in oil and gas production facilities • Process water treatment in refineries and petrochemical plants • Industrial wastewater treatment • Pretreatment for reverse osmosis or other membrane processes • Solid-liquid separation in mining and mineral processing operations The specific configuration and components of a filtration modular process skid are tailored to the specific application, fluid characteristics, and treatment requirements. Proper selection, sizing, and integration of the skid components are crucial for achieving efficient and reliable filtration performance. REMOVING IMPURITIES FROM NATURAL GAS WITH AMINE FILTRATION An amine filtration skid is a modular and transportable equipment used in the oil and gas industry for the removal of hydrogen sulfide (H2S) and carbon dioxide (CO2) from natural gas or other gas streams. It typically consists of the following main components: Amine Filtration Skid – Germany Amine Contactor: This is a vertical column or vessel where the gas stream is brought into contact with a liquid amine solution, typically an aqueous solution of monoethanolamine (MEA), diethanolamine (DEA), or methyldiethanolamine (MDEA). The amine solution selectively absorbs H2S and CO2 from the gas stream. Amine Regenerator: This is another column or vessel where the rich amine solution (containing absorbed H2S and CO2) is heated to release the absorbed gases. The regenerated lean amine solution is then recycled back to the amine contactor. Amine Circulation Pumps: These pumps are used to circulate the amine solution between the contactor and regenerator. Heat Exchanger: A heat exchanger is used to transfer heat from the hot, regenerated lean amine solution to the rich amine solution before it enters the regenerator, improving the overall energy efficiency of the process. Filters and Separators: Various filters and separators are included to remove any solid particles, liquid hydrocarbons, or other contaminants from the gas stream and amine solution. Instrumentation and Control Systems: The skid is equipped with instrumentation and control systems to monitor and regulate the process parameters, such as temperature, pressure, flow rates, and amine solution concentrations. The amine filtration skid is designed to be compact, modular, and portable, allowing it to be easily transported and installed at various oil and gas production sites or processing facilities. It is typically used as a pre-treatment step before other gas processing operations, such as dehydration or liquefaction, to ensure that the gas stream meets the required specifications for downstream processes or transportation. NUT SHELL FILTER AND HYDRO-CYCLONE FILTER SKID PRODUCED WATER Nut shell filter and hydro-cyclone filter skids are commonly used in the treatment of produced water in the oil and gas industry. These skids are designed to remove solid particles and other contaminants from the produced water stream. Here's an overview of each component: Nut Shell Filter Skid: Nut shell filters, also known as walnut shell filters or pecan shell filters, are a type of granular media filter that uses crushed nut shells as the filter media. The nut shell filter skid typically consists of the following components: a. Filter vessel: A pressure vessel containing the nut shell media bed. b. Influent and effluent connections: Piping connections for the untreated and treated water streams. c. Backwash system: A system for periodically backwashing the filter to remove accumulated solids and maintain filter performance. d. Instrumentation and controls: Instruments for monitoring pressure, flow, and other parameters, along with controls for automated operation. Nut shell filters are effective in removing suspended solids, including sand, silt, and other insoluble particles, from produced water. They are commonly used as a pre-treatment step before other treatment processes, such as desalination or water injection. Hydro-cyclone Filter Skid: Hydro-cyclone filters are centrifugal separation devices that use centrifugal force to remove solid particles from the fluid stream. A hydro-cyclone filter skid typically includes: a. Hydro-cyclone vessel(s): Conical vessels where the centrifugal separation occurs. b. Inlet and outlet connections: Piping connections for the untreated and treated water streams, as well as connections for the underflow (concentrated solids). c. Pumps: Pumps to provide the necessary pressure and flow for the hydro-cyclone operation. d. Instrumentation and controls: Instruments for monitoring pressure, flow, and other parameters, along with controls for automated operation. Hydro-cyclone filters are effective in removing coarse and dense solid particles, such as sand, from produced water. They are often used as a pre-treatment step before other filtration or treatment processes, as they can handle high solids loading and reduce the burden on downstream equipment. Both nut shell filter and hydro-cyclone filter skids are designed for modular and skid-mounted installation, making them easily transportable and suitable for various produced water treatment facilities. They can be used in combination with other treatment processes, such as coagulation, dissolved air flotation, or membrane filtration, to achieve the desired level of produced water treatment. The selection and configuration of these skids depend on factors such as the characteristics of the produced water, the required effluent quality, and the overall treatment process design. Proper operation and maintenance of these skids are crucial for ensuring efficient and reliable produced water treatment.

  • PROCESS DESIGN

    Back PROCESS DESIGN The process design stage is critical for the development of a new chemical process or the modification of an existing one. At Technitas Pvt. Ltd. we ensure that during the process design stage there is a seamless collaboration between our process engineers, piping engineers, instrumentation engineers, and other disciplines to ensure a safe, efficient, and operable process design. The outputs of this stage serve as the basis for detailed engineering, procurement, and construction activities. The essential process design deliverables typically required for any small-medium sized project include the following: - ➣ Process Simulation (HYSYS/PRO-II) - Process simulations are carried out using specialized software like Aspen HYSYS or PRO-II to model the process behavior and performance. These simulations help in optimizing process conditions, sizing equipment, and predicting process streams and properties. Different scenarios and "what-if" cases can be analyzed to arrive at the most efficient and economical process design. ➣ Heat & Mass Balance Detailed heat and mass balances are performed to ensure the conservation of energy and material throughout the process. These calculations help in determining the energy requirements, utility needs, and material flows at various points in the process. ➣ Piping and Equipment Sizing Based on the process conditions and flow rates obtained from simulations and mass balances, the sizes of pipes, vessels, and other equipment are determined. Appropriate design codes and standards are followed for the sizing calculations, considering factors like pressure, temperature, corrosion allowance, and fluid properties. ➣ CV Sizing Calculations Control valve (CV) sizing calculations are performed to select the appropriate valve size and trim characteristics based on the process conditions and flow requirements. These calculations ensure proper control valve performance and avoid issues like cavitation, flashing, or excessive noise. ➣ Process and Flow Diagram (PFD) alternatively a block flow diagram would be prepared for the concerned plant or unit, this would include a graphical representation of the overall process, showing the major equipment, material flows, and process conditions. It serves as the basis for a more detailed Piping and Instrumentation Diagram (P&ID) and helps in visualizing the process flow. ➣ Process and Instrumentation Diagram (P&ID) At Technitas Pvt. Ltd. we believe that the P&ID is the central basis for reference and must be a comprehensive technical drawing that depicts the interconnection of process equipment, piping, instrumentation, and control systems. It would typically include details like line sizes, equipment specifications, valve types, and instrumentation tagging, providing a detailed representation of the process. ➣ Hydraulic/Pressure Drop Calculations Hydraulic calculations are performed to determine the pressure drop across various segments of the piping system, considering factors like pipe size, flow rates, fluid properties, and piping configurations. These calculations ensure proper sizing of pumps, compressors, and other equipment to overcome the pressure losses in the system. ➣ Valve Sizing In addition to control valves, other types of valves like isolation valves, relief valves, and check valves are sized based on the process conditions and flow requirements. Valve sizing calculations consider factors like pressure drop, flow rate, and fluid properties to ensure proper valve selection and performance. ➣ Valve Datasheets Valve datasheets are prepared for each valve in the process, summarizing key information like valve type, size, material of construction, pressure and temperature ratings, and other specifications. These datasheets are used for procurement and ensure that the correct valves are selected and installed. ➣ Pump Sizing Pump sizing calculations are performed to select the appropriate pump type, size, and configuration based on the process requirements, such as flow rate, pressure head, and fluid properties. Factors like pump efficiency, NPSH (Net Positive Suction Head), and system curves are considered during the sizing process. ➣ Pump Datasheets - Pump datasheets are prepared to document the specifications of each pump in the process, including details like pump type, capacity, head, efficiency, materials, and other relevant information. ➣ Instrument Datasheets Instrument datasheets are prepared for each instrument in the process, such as flow meters, temperature transmitters, pressure gauges, and control systems. These datasheets contain information like instrument type, range, accuracy, materials, process conditions, and other relevant details for procurement and installation. ➣ Lists – A comprehensive list of components including their tag numbers, this would typically include Equipment lists, pump lists, valve lists, and instrument list.

  • PRE-BID ENGINEERING AND FEED

    Back PRE-BID ENGINEERING AND FEED We can provide design support to your sales team during the tendering and preconception stages of the project while pre-bidding and estimation, where the level of detail depicted in the preliminary drawings and specific deliverables may vary depending on the project scope, complexity, and industry standards. Additionally, the design process often involves iterative reviews, calculations, and coordination among various engineering disciplines to ensure compliance with codes, standards, and project specifications. Our typical pre-bid engineering services are as enlisted below: - ➣ Preparation of Plot Plan - This would include a layout of the plant area, including the arrangement of major equipment, buildings, access roads, and other facilities. It considers factors like process flow, safety distances, future expansions, and site constraints. ➣ Preparation of PFD (Process Flow Diagram) - During the tendering/ pre-bidding stage the PFD would typically represent the overall process, showing the major equipment and the flow of materials through the process units. It serves as the basis for the more detailed P&ID. ➣ P&ID (Piping and Instrumentation Diagram) - During the feed or pre-bidding stage a preliminary P&ID is prepared, where the objective is to depict the interconnection of process equipment, piping, instrumentation, and control systems. ➣ 3D Model of the Facilities - Some of our clients prefer to create a primitive 3D model of the plant to include it as a part of their technical offer because it helps them visualize their plant/facility layout during the bidding stages. ➣ 2D Piping GA (General Arrangement) Drawing : The 2D Piping GA drawing is a top-down view of the piping layout, showing the major equipment locations and process piping layout and initial scheme. ➣ Equipment Pre-Bid Design : Before finalizing equipment purchases, pre-bid designs are prepared for major equipment like storage tanks, columns, heat exchangers, pressure vessels, and rectangular tanks. These designs include detailed specifications, dimensions, and requirements to obtain accurate quotes from vendors. ➣ Electrical and Instrumentation : This aspect involves designing the electrical power distribution system, control systems, instrumentation, and automation required for the plant. It includes selecting appropriate equipment, cable routing, control panel layouts, and integrating with the process control systems. ➣ Bill of Quantities (BOQ): The BOQ serves as the basis for cost estimation, procurement, and construction planning. In most cases the Bill of Quantities would typically include a detailed list of materials, equipment, and components required for the project. Separate BOQs may be prepared for different aspects, such as: Storage Tanks Columns Heat Exchangers Pressure Vessels Rectangular Tanks Piping and Pipe Supports Skid and Structural Access Platforms Electrical and Instrumentation

  • VENDOR VISITS

    Back VENDOR VISITS At Technitas Pvt. Ltd. our objective is to synergize with our clients and adhere to their requirements including performing visits to their concerned sub-contractor or vendor parties either along with a client representative or on behalf of the client. Vendor visits during the fabrication of critical equipment are an essential part of quality assurance and project execution. These visits help ensure compliance with design codes, project specifications, and quality requirements. The key activities involved in vendor visits include: Throughout the vendor visits, Technical Pvt. Ltd. will maintain open communication with the vendor, address any concerns or non-conformances promptly, and document all observations and actions taken. We realize that it is crucial to make effective vendor visits to help mitigate risks, ensure compliance with project requirements, and facilitate timely delivery of high-quality equipment for successful project execution. ➣ Ensure Design Code Compliance : Review the fabrication processes and procedures to verify compliance with the applicable design codes, such as ASME, API, or project-specific codes. Verify that the fabrication methods, material selection, and welding techniques adhere to the specified code requirements. ➣ Ensure Conformity Assessment to Project/Client Specifications : Conduct a thorough review of the fabrication activities to ensure conformity with the project's technical specifications and client requirements. Assess compliance with dimensional tolerances, material specifications, and any specific design requirements outlined in the project documentation. ➣ Review Quality Procedures and Welding Procedures: Evaluate the quality control procedures implemented by the vendor, including inspection and testing plans, non-destructive testing (NDT) methods, and acceptance criteria. Review the welding procedures, welder qualifications, and weld quality control measures to ensure compliance with project standards. ➣ Review Material Certificate Compliance: Verify that the materials used in fabrication are in-line with the specified material grades and compositions. Review the material certificates and test reports provided by the vendor to ensure traceability and compliance with project requirements. ➣ Witness Critical Stages as per Inspection Test Plan: Attend and witness critical fabrication stages, such as material cutting, fit-up, welding, heat treatment, and NDT, as specified in the inspection test plan (ITP). Document and report any non-conformances or deviations observed during these critical stages. ➣ Anticipate Slippages and Bottlenecks and Recommend Remedial Actions: Monitor the fabrication progress and identify potential slippages or bottlenecks that may impact the project schedule. Collaborate with the vendor to develop and implement remedial actions, such as resource allocation, process optimization, or temporary design modifications, to ensure smooth progress. ➣ Review of Final QA/QC Dossier Before Release for Shipment: Conduct a comprehensive review of the final quality assurance/quality control (QA/QC) dossier prepared by the vendor. Verify that all required documentation, such as material certificates, NDT reports, inspection records, and as-built drawings, are complete and accurate. Ensure that the QA/QC dossier meets the project's documentation requirements before approving the release for shipment.

  • PIPING ENGINEERING

    Back PIPING ENGINEERING At Technitas Pvt. Ltd., we ensure that the Piping design phase involves close collaboration between piping designers, process engineers, stress analysts, and other disciplines to ensure that the piping systems are designed in compliance with applicable codes and standards, meeting the project requirements and specifications while considering factors such as accessibility, maintainability, and cost-effectiveness. Typical set of piping engineering deliverables include :- ➣ Plot Plan- Detailed layout drawing would depict the entire plant area, including the arrangement of major equipment, buildings, access roads, and other facilities. It would serve as the basis for piping routing and helps identify potential clashes or interferences during the piping design phase. ➣ Piping Line List / Critical Line List - The piping line list is a document that lists all the individual piping lines in the plant, along with their unique line numbers, service descriptions, and other relevant information. A critical line list identifies the piping lines that are critical to the process or safety, requiring additional attention and specific design considerations. ➣ Piping Material Specifications (PMS) - The PMS is a document that specifies the materials of construction for piping components, such as pipes, fittings, valves, and flanges. It considers factors like process conditions, fluid properties, and corrosion resistance requirements. The PMS ensures consistency in material selection and compliance with relevant codes and standards. ➣ 3-D Modeling of Plant Piping - Advanced 3D modeling software is used to create a comprehensive 3D model of the plant piping systems. The 3D model helps visualize the piping layout, identify potential clashes or interferences, and supports the generation of isometric drawings and other fabrication documents. ➣ Piping Layout Drawing - The piping layout drawing is a detailed 2D or 3D representation of the piping systems, showing the actual routing, elevations, and connections to equipment. It includes information such as pipe sizes, materials, and locations of valves, fittings, and other components. The piping layout drawing is used for construction, fabrication, and installation purposes. ➣ Piping Material Take-Off - The piping material take-off is a detailed list of all the piping components required for the project, including pipes, fittings, valves, flanges, and gaskets. It is generated based on the piping layout drawings and is used for procurement and material planning purposes. ➣ Piping Isometric Drawings - Piping isometric drawings are 3D representations of individual piping lines or spools, showing accurate dimensions, orientations, and the locations of all components (pipes, fittings, valves, etc.).These drawings are used for fabrication purposes and serve as a reference for welders and pipefitters during installation. ➣ Valve List – list of all the valves used in the piping systems, along with their unique valve numbers, types, sizes, materials, and other relevant information. It is used for procurement, installation, and maintenance purposes. ➣ Valve Datasheets - Valve datasheets are comprehensive documents that provide detailed specifications for each valve, including dimensions, pressure and temperature ratings, materials of construction, and other technical information. These datasheets ensure that the correct valves are procured and installed in the piping systems. ➣ Piping Support Schedule - The piping support schedule document would include a list of all the pipe supports required for the piping systems, including their types, locations, and loading information. It is used for the design and fabrication of pipe supports and ensures adequate support for the piping systems. ➣ Pipe Support Drawings – Detail fabrication drawings that show the design and dimensions of various pipe support types, such as guides, anchors, shoes, and spring hangers. These drawings are used for the fabrication and installation of pipe supports, ensuring proper support and allowing for thermal expansion and contraction of the piping systems.

  • PIPE STRESS ANALYSIS

    Back PIPE STRESS ANALYSIS Pipe stress analysis is a critical aspect of piping design, ensuring that the piping systems can withstand various loads and stresses without failure or excessive deformation. At Technitas Pvt. Ltd. we understand the importance of EPC client report formats and project specified loading combinations which form the basis of our analysis to consider factors such as thermal expansion, weight loads, pressure loads, wind and seismic loads, and other imposed loads. Upon completing the stress analysis, a comprehensive report is generated, we ensure that the pipe stress analysis process involves close collaboration between piping stress engineers, piping designers, and other disciplines to ensure that the piping systems are designed to withstand all anticipated loads and stresses while adhering to applicable codes, standards, and project specifications. ➣ Process Piping – Pipe stress analysis of these lines can be designed as per specified codes and standards such as ASME B31.3 – PROCESS PIPING ➣ Metallic or Non-Metallic Process Piping- The type of piping material, whether metallic (e.g., carbon steel, stainless steel, alloys) or non-metallic (e.g., plastic, fiberglass-reinforced plastic, rubber), plays a crucial role in the stress analysis. Different materials have varying properties, such as thermal expansion coefficients, allowable stresses, and temperature limits, which must be considered. ➣ Cladded or Non-Cladded Process Piping - Cladding is a process where a corrosion-resistant material (e.g., stainless steel) is metallurgically bonded to a base material (e.g., carbon steel). Cladded piping requires special considerations in stress analysis due to the different material properties of the cladding and the base material. ➣ Vacuum jacketed piping is a specialized piping system used in applications where highly efficient insulation is required, such as in cryogenic processes, liquefied gas handling, or low-temperature applications ➣ Pipelines - For long-distance pipelines, the stress analysis must account for factors like terrain profile, soil conditions, temperature variations, and potential ground movements or settlements. Specific codes and standards, such as ASME B31.4 and B31.8, are used for pipeline stress analysis. ➣ Slurry Piping - Pipe stress analysis of these lines can be designed as per specified codes and standards such as ASME B31.11 – Slurry Transportation Piping Systems.

  • Multiport Selector Manifold Valve skid

    Back Multiport Selector Manifold Valve skid A multiport valve selector skid is a specialized equipment assembly used in industrial processes, particularly in the oil and gas industry. It is designed to facilitate the selection and routing of various fluid streams through different process lines or equipment. The key component of a multiport valve selector skid is the multiport valve itself, which typically consists of a valve body with multiple inlet and outlet ports. These ports are connected to various process lines, vessels, or other equipment through piping or tubing. • End client: ADNOC • LOCATION – ABU DHABI, UAE • PRODUCTION CAPACITY: 20000 STBOPD At Technitas Pvt. Ltd. has over several years of experience in the design and detail engineering of a multiport valve selector skid, while each skid is unique , we notice that most Multiport Valve skids would typically comprise of the following components: ➣ Multiport valve: The central component of the skid is the multiport valve, which features a valve body with multiple inlet and outlet ports. This valve allows for the selection and routing of fluid streams through its various ports. ➣ Valve actuator: The multiport valve is equipped with an actuator mechanism, such as a pneumatic or electric actuator, that operates the valve to direct the fluid streams through the desired ports. ➣ Piping manifolds: The skid includes inlet and outlet piping manifolds that connect the multiport valve to various process lines, vessels, or equipment. These manifolds are typically arranged in a compact and organized manner to minimize the overall footprint of the skid. ➣ Instrumentation and controls: The skid incorporates various instrumentation, such as pressure gauges, temperature sensors, and flow meters, to monitor and control the fluid streams passing through the skid. Additionally, a control system, which can be a local panel or integrated into a larger control system, manages the operation of the multiport valve and actuator based on process requirements or operator inputs. ➣ Sampling connections: In some cases, the skid may include sampling connections or ports to enable the collection of fluid samples from various streams for analysis or testing purposes. ➣ Skid structure: The entire assembly is mounted on a skid or base, which facilitates transportation, installation, and relocation of the unit. The skid may also include access platforms, stairs, and lifting lugs for safe operation and maintenance. • End client: ADNOC • LOCATION – ABU DHABI, UAE • PRODUCTION CAPACITY: 55000 BOPD During the design and detail engineering stages, our team ensures that the multiport valve selector skid is fit for its intended operational purposes, which primarily are:- ➣ Stream selection and routing: The skid allows operators to select and route specific fluid streams to the desired process equipment or lines, enabling efficient process control and flexibility. ➣ Sampling and blending: The skid can be used to divert fluid samples from various process streams for analysis or testing purposes and, in some cases, to blend or combine multiple fluid streams in controlled proportions. ➣ Switching and maintenance: The multiport valve configuration provides the ability to switch between different process streams or equipment, enabling maintenance, cleaning, or process reconfiguration without disrupting the overall operation. These skids are commonly used in applications such as well testing, production separation, process sampling, and fluid routing in refineries, chemical plants, and other industrial facilities where efficient and controlled management of fluid streams is essential. The compact and modular design of the skid allows for easy installation, relocation, and integration into existing or new process systems.

  • OurAllProject

    PROJECTS Design And Detail Engineering Services Read More Multiport Selector Manifold Valve skid Read More Separation Skid Package Read More Filtration Skid Package Read More Flow Metering Skid Read More Glycol Dehydration Package Read More Early Production Facility Read More Fitness for Service Read More

  • Our Services

    SERVICES PRE-BID ENGINEERING AND FEED View More PROCESS DESIGN View More EQUIPMENT DESIGN View More PIPING ENGINEERING View More PIPE STRESS ANALYSIS View More 3-D MODELLING AND CAD View More STRUCTURAL DESIGN View More ELECTRICAL AND INSTRUMENTATION View More FEA AND CFD View More REGISTERED PROFESSIONAL ENGINEERING View More PROCUREMENT SUPPORT View More VENDOR VISITS View More

  • PROJECTS | Kavya Technitas

    PROJECTS Design And Detail Engineering Services Read More Multiport Selector Manifold Valve skid Read More Separation Skid Package Read More Filtration Skid Package Read More Flow Metering Skid Read More Glycol Dehydration Package Read More Early Production Facility Read More Fitness for Service Read More

bottom of page